5 research outputs found

    Quantum Algorithms, Architecture, and Error Correction

    Get PDF
    Quantum algorithms have the potential to provide exponential speedups over some of the best known classical algorithms. These speedups may enable quantum devices to solve currently intractable problems such as those in the fields of optimization, material science, chemistry, and biology. Thus, the realization of large-scale, reliable quantum-computers will likely have a significant impact on the world. For this reason, the focus of this dissertation is on the development of quantum-computing applications and robust, scalable quantum-architectures. I begin by presenting an overview of the language of quantum computation. I then, in joint work with Ojas Parekh, analyze the performance of the quantum approximate optimization algorithm (QAOA) on a graph problem called Max Cut. Next, I present a new stabilizer simulation algorithm that gives improved runtime performance for topological stabilizer codes. After that, in joint work with Andrew Landahl, I present a new set of procedures for performing logical operations called color-code lattice-surgery. Finally, I describe a software package I developed for studying, developing, and evaluating quantum error-correcting codes under realistic noise

    Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions

    Get PDF
    Physical qubits in experimental quantum information processors are inevitably exposed to different sources of noise and imperfections, which lead to errors that typically accumulate hindering our ability to perform long computations reliably. Progress towards scalable and robust quantum computation relies on exploiting quantum error correction (QEC) to actively battle these undesired effects. In this work, we present a comprehensive study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams. This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits. We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level. Finally, we study the impact of residual crosstalk errors on the performance of fault-tolerant QEC numerically, identifying the experimental target values that need to be achieved in near-term trapped-ion experiments to reach the break-even point for beneficial QEC with low-distance topological codes.Comment: 30 pages, 13 figures, 1 tabl

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Projectile Interactions in Theoretical Triple Differential Cross Sections for Simultaneous Excitation-Ionization of Helium

    No full text
    The importance of projectile interactions in triple differential cross sections (TDCS) is explored for the problem of simultaneous excitation-ionization of helium by electron impact using a new approach that we call the four-body distorted wave model (4DW). The 4DW model includes all projectile interactions, namely initial- and final-state projectile-target interactions, and the post-collision interaction between the two continuum electrons. Results are presented for an incident electron energy of 500 eV and are compared to experimental data, as well as a second-order R-matrix theory and the first Born approximation. Results for absolute TDCS ratios of ionization without excitation to excitation-ionization are also presented
    corecore